

IT-Infrastruktur

WS 2010/11

Hans-Georg Eßer Dipl.-Math., Dipl.-Inform.

Foliensatz G (12.11.2010): ATM

12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-1

IT-Infrastruktur, Hans-Georg Eßer

Dienste vor ATM

Spezielle Netzwerke für spezielle Dienste

- POTS (Plain Old Telephon Service)
 - klassisches Telefonnetz, leitungsvermittelt
- Computer-Daten
 - X.25, paketvermitteltes Datennetzwerk (D: Datex-P)
 - (oder via Modem über POTS)
 - lokal: LAN (Ethernet, Token-Ring, Token-Bus)
- Fernsehprogramme
 - terrestrisch, Kabel-TV, Satellit (alles analog)

ATM – Details zur Entwicklung

Referenzen:

[1] M. de Prycker: "Asynchronous Transfer Mode", 1996, Prentice Hall

[2] M. Pöllhuber: "Moderne Telekommunikation", http://tkhf.adaxas.net/

12.11.2010

12.11.2010

Folie G-2

Probleme der alten Strukturen

- Netzwerke (meist) nur für die Dienste geeignet, für die sie entworfen wurden
- zahlreiche "parallele" Netzwerk-Strukturen, die nicht optimal genutzt werden:
 - unterschiedliche Spitzenzeiten, z. B. 9-17 Uhr im Telefonnetz; abends im Kabelnetz
 - Netze können sich nicht gegenseitig Last abnehmen (keine TV-Übertragung übers Telefonnetz, keine Telefonate über Kabel-TV)
- nicht für künftige (unbekannte) Dienste nutzbar

Ziel: Ein universelles Netz

Erwartungen privater Nutzer

- Flexibilität und Zukunftssicherheit
 - Dienste reduzieren durch bessere Kompression die benötigte Bandbreite
 - neue Dienste mit unbekannter Bandbreite sofort integrierbar
- effizienter Ressourceneinsatz
 - verschiedene Dienste können sich die zur Verfügung stehende Bandbreite teilen
 - unterschiedliche Spitzenzeiten der Dienste gleichen sich aus

12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-5

- Fernsehen
 - SDTV und aus damaliger Sicht Zukunftsmusik **HDTV**
 - normale Ausstrahlung; Video-on-Demand
- Telefon, Bildtelefon
- Teleshopping, Fernstudium, Bildinformationen aus Reise-/Immobilienmarkt etc.

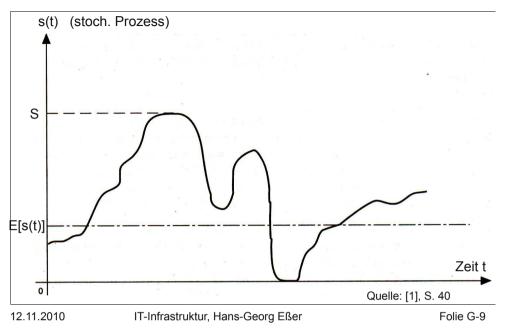
12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-6

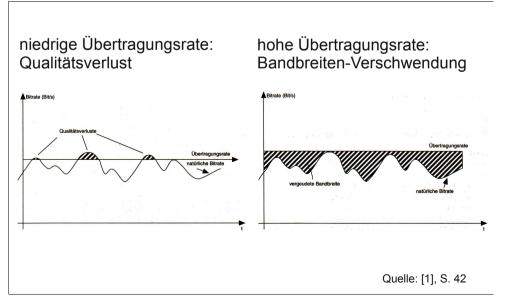
Mothschule Sciences Erwartungen v. Firmen-Nutzern

- Bildtelefon, auch mit Tele-Konferenz
- Verbindung lokaler Netzwerke (an versch. Unternehmensstandorten)
- damit: gemeinsamer Datenzugriff
- Home-Office (mit Anbindung ans Firmennetz)
- Multimedia: medizinische (Bild-)Daten, E-Mail mit Bildern/Videos, Multimedia-Fernkonferenz


Dienst-Datenraten (1)

- Jeder Dienst hat eine "natürliche Datenrate" (Rate der Informationserzeugung in der Quelle; wir ignorieren Beschränkungen des Netzwerks)
- Spitzenwert S (maximal auftretende Datenrate, z. B. permanente HiFi-Übertragung über Telefon)
- Durchschnittswert E (betrachte Informationsrate als stochastischen Prozess s(t), E = E[s(t)] Erwartungswert)
- Quotient S / E = B ("Burstiness")

12.11.2010



Dienst-Datenraten (2)

Feste Bitraten für Übertragung

Dienst-Datenraten (3)

Dienst	E[s(t)]	B
Sprache	32 kBit/s	2
Interaktive Daten	1-100 kBit/s	10
Massendaten	1-10 MBit/s	1-10
Standard-Video	1,5-15 MBit/s	2-3
HDTV	15-150 MBit/s	1-2
HQ-Videotelefonie	0,2-2 MBit/s	5

Merkmale einiger Breitbanddienste

12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-10

Vermittlungsverfahren (1)

Welches Vermittlungsverfahren für das neue Netzwerk?

feste Bitrate (einfach)

(komplex)

12.11.2010

Leitungsvermittlung

Mehrraten-Leitungsvermittlung

Schnelle Leitungsvermittlung

Schnelle Paketvermittlung, ATM (Asynchronous Transfer Mode)

Frame-Relay

variable Bitrate Frame-Vermittlung

Paketvermittlung

12.11.2010 IT-Infrastruktur, Hans-Georg Eßer

Folie G-11

IT-Infrastruktur, Hans-Georg Eßer

Folie G-12

Vermittlungsverfahren (2)

Vermittlungsverfahren (3)

Leitungsvermittlung

- feste Leitung f
 ür jede Verbindung
- Analoges Telefonnetz, Standard-ISDN
- basiert auf Time Division Multiplex (TDM)
- Synchronous Transfer Mode (STM)
- feste Bitrate auf einer Leitung (z. B. ISDN-B-Kanal: 64 kBit/s, passend zu PCM-Übertragung der Gesprächsdaten)
- jeder Dienst muss diese Standard-Bitrate nutzen

12.11.2010

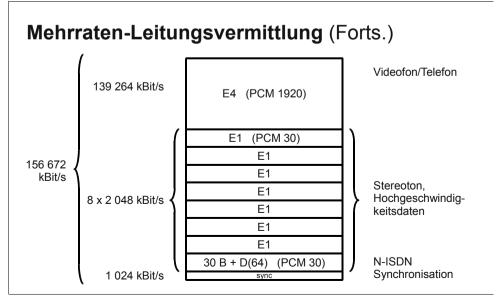
IT-Infrastruktur, Hans-Georg Eßer

Folie G-13

Mehrraten-Leitungsvermittlung

- (Multirate Circuit Switching, MRCS)
- Time Division Multiplex (wie bei einfacher Leitungsvermittlung), mit fester Grundkanalrate
- Verbindungen dürfen mehrere Grundkanäle gleichzeitig belegen
- Immer noch zu unflexibel:
 - niedrige Grundkanalrate → braucht viele Kanäle für "Breitbandiges"
 - hohe Grundkanalrate → Verschwendung

12.11.2010


12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-14

Vermittlungsverfahren (4)

Vermittlungsverfahren (5)

Schnelle Leitungsvermittlung

- (Fast Circuit Switching, FCS) ähnelt einfacher Leitungsvermittlung, aber:
- Ressourcen nur bei Bedarf verfügbar
- Verbindungsaufbau: Anforderung einer Verbindung mit n x Grundrate; Bedarf wird nur gespeichert, nicht zur Verfügung gestellt
- Bei Beginn der Datenübertragung sofortige Bereitstellung (kann fehlschlagen)
- Kombination FCS+MRCS effizient, aber sehr komplex

Vermittlungsverfahren (6)

Vermittlungsverfahren (7)

Paketvermittlung

- Daten in Paketen gekapselt; Paket-Header mit Routing, Fehlerkorrektur etc.
- Aufwendige Protokolle steuern f
 ür jedes Teilst
 ück der Strecke Fehlerprüfung und Datenflusssteuerung
- variable Paketlänge → komplexe Puffer-Verwaltung in den Zwischenstationen
- problematisch für Echtzeit-Dienste
- Beispiel: X.25 (Datex-P)

12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-17

IT-Infrastruktur, Hans-Georg Eßer

ATM: verbindungsorientiert

- Logische Einrichtungsphase: Ressourcen reservieren, falls verfügbar – sonst verweigern
 - Entscheidung über Freigabe: statistisch (Wahrscheinlichkeit für anschließendes Scheitern gering)
 - → Anteil Paketverluste: zwischen 10⁻⁸ und 10⁻¹²
- Nach Datenübertragung Freigabe der Ressourcen

Schnelle Paketvermittlung (ATM)

- Paketvermittlung mit minimaler Funktionalität innerhalb des Netzwerks
 - höhere Raten als normale Paketvermittlung
 - asynchroner Betrieb, was Taktgeber von Sender und Empfänger angeht (leere Pakete einfügen / entfernen)
- überträgt jeden Dienst, unabhängig von
 - Bitrate, Belastung zu Spitzenzeiten
 - Qualitätsanforderungen

12.11.2010

Folie G-18

ATM: Fehlererkennung

anders als bei "normalen" Paketvermittlungen:

- keine Fehlererkennung
- kein Schutz vor Paketverlust (nur Prävention bei Entscheidung über Zulassen einer neuen Verbindung)
- damit auch keine Fehlerkorrektur

ATM: Header

ATM: Datenfelder (1)

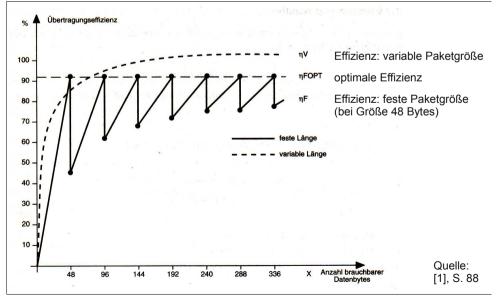
- Header hat eingeschränkte Funktion
 - Identifikation der virtuellen Verbindung
 - erlaubt Multiplexen mehrerer virtueller Verbindungen über eine Leitung → virtuelle Pfade
- klassische Header-Informationen (wie in anderen Paketvermittlungen) fehlen
 - Folgennummer (Reihenfolge der Pakete)
 - X.25 M-Bit ("es folgen weitere Pakete")
 - X.25 D-Bit (delivery confirmation)

12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-21

- relativ kleine Datenfelder (48 Byte)
 - kleine Puffer in Vermittlungsknoten
 - Verzögerung durch Warteschlangen begrenzt
 - · darum gut für Echtzeitdienste
- Paketgröße fest oder dynamisch?
 - dynamisch: minimiert Overhead durch "halb-leere" Pakete
 - fest: nur optimal, wenn ein exaktes Vielfaches dieser Paketgröße gesendet wird
 - Entscheidung für fest; "Zelle" statt "Paket"


12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-22

ATM: Datenfelder (2)

Virtuelle Verbindungen (1)

- Virtuelle Kanäle
 - Eine (physische) Verbindung (z. B. über Glasfaser) bietet Platz für zahlreiche parallele Übertragungen
 - Unterscheidung zwischen "logischen" Verbindungen nötig, die über ein Kabel laufen
 - VCI: Virtual Channel Identifier (ID des virt. Kanal)
 - gilt nur auf Teilstrecke (zwischen zwei ATM-Knoten)
 - wird bei Weiterleitung auf die nächste Teilstrecke geändert (in ATM-Switch)
 - 16 Bit: unterscheidet bis zu 65 536 virtuelle Kanäle (Annahme: 10 000 typisch auf Glasfaser-Kabel)

IT-Infrastruktur, Hans-Georg Eßer

Virtuelle Verbindungen (2)

Virtuelle Verbindungen (3)

- Virtuelle Kanäle: Komponentendienste
 - VCIs erlauben dynamisches Hinzufügen / Entfernen von weiteren Diensten während einer Verbindung
 - z. B.: Bei Telefonat Aktivieren / Deaktivieren einer Video-Verbindung
 - Komponente hinzufügen durch Wahl eines zusätzlichen VCI (kein Konflikt mit bestehenden Komponenten)

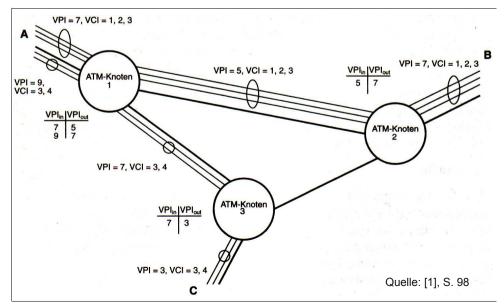
12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-25

Virtuelle Pfade

- ATM unterstützt auch "guasi-permanente" Verbindungen (wie Standleitungen) mit fester **Bitrate**
- VPI-Feld hat Länge 8 Bit oder 12 Bit, das erlaubt 256 oder 4096 virtuelle Pfade
- In jedem Pfad bis zu 65 536 virtuelle Kanäle gebündelt
- Kanäle, die Teil eines virt. Pfads sind, ändern i.d.R. nicht ihre VCI


12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-26

Virtuelle Kanäle und Pfade

ATM-Prioritäten

- Priorität für einzelne Kanäle (VCI), aber auch zellenweise festlegbar
- Zeit-Priorität
 - Zellen in "wichtigen" Kanälen schnell transportieren
 - andere dürfen länger im Netz liegen bleiben
- Semantische Priorität
 - Zellen in "wichtigen" Kanälen mit geringerer Verlustwahrscheinlichkeit befördern
 - andere können eher verloren gehen

ATM-Anpassungsschicht (1)

- engl. ATM Adaptation Layer (AAL)
- Umsetzung von Daten aus h\u00f6heren Schichten auf ATM-Zellen
- Dienste nach drei Parametern klassifiziert:
 - zeitliche Beziehung Ursprung/Ziel (z. B. Telefonie, Datenübertragung)
 - Bitrate: konstant (CBR), variabel (VBR)
 - Verbindungsmodus: verbindungslos, verbindungsorientiert

12.11.2010

12.11.2010

IT-Infrastruktur, Hans-Georg Eßer

Folie G-29

ATM-Anpassungsschicht (3)

- ABR (Available Bitrate; Klasse C)
 - · variable Bitrate
 - kein zeitlicher Zusammenhang
 - verbindungsorientiert
 - Bandbreite wird nach Verfügbarkeit angepasst ("Reste aufbrauchen")
- UBR (Unspecified Bitrate; Klasse D)
 - ähnlich ABR, aber:
 - verbindungslos

ATM-Anpassungsschicht (2)

5 Klassen (ursprünglich 4)

- CBR (Klasse A)
 - zeitlicher Zusammenhang
 - konstante Bitrate
 - verbindungsorientiert

- RT-VBR (Klasse B)
 - zeitlicher Zusammenhang, Real-Time
 - · veränderliche Bitrate
 - verbindungsorientiert
- NRT-VBR (Klasse B)
 - wie RT-VBR, aber nicht Real-Time

IT-Infrastruktur, Hans-Georg Eßer

Folie G-30

12.11.2010

AAL – für die Klassen

Klasse A: AAI 1

Klasse C: AAL 3

Klasse B: AAL 2

Klasse D: AAL 4

	AAL1 (Class A)	AAL2 (Class B)	AAL3 (Class C)	AAL4 (Class D)	AAL 5 (SEAL)	
Synchroni- sation	erforderlich		nicht erforderlich			
Bitrate	konstant	variabel				
Verbindungs- art	verbindungsorientiert			verbindungs- los	verbindungs- orientiert/-los	
Beispiele	Sprache Video	Paketierte Sprache bzw. Video	Datex-P (X.25) Frame Relay	LAN- Protokolle	AAL3/4 Dienste	

SEAL: simple and effective ATM Adaptation Layer

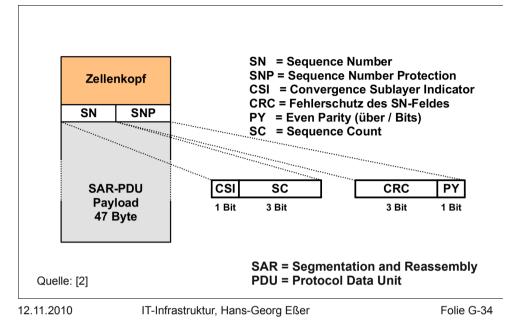
IT-Infrastruktur, Hans-Georg Eßer

Quelle: [2]

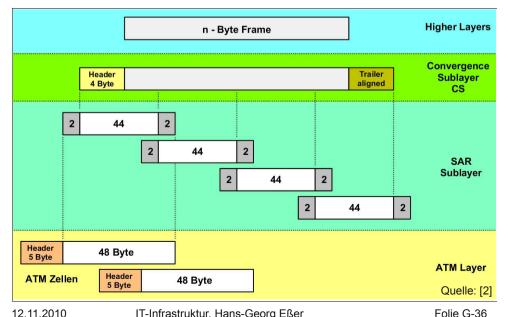
ΔΔΙ 1

- AAL 1: CBR, "Leitungsemulation"
- 1 Byte Steuer-Information:
 - Bit 7 4: Folge-Nummer, die für jede Zelle um eins erhöht wird, um beim Empfänger verloren gegangene Zellen zu erkennen bzw. die Datenrate an den Empfänger anzupassen
 - Bit 3 0: 4 Bit CRC-Prüfsumme, um die Folge-Nummer auf Gültigkeit zu prüfen
- 47 Bytes Nutzlast

12.11.2010


IT-Infrastruktur, Hans-Georg Eßer

Folie G-33



AAL 3/4

- Kombination von AAL-3 und AAL-4.
- Optimiert f
 ür nicht verbindungsorientierte Daten
 - Daten mit Header (Länge, Schutz vor Datenverlust) und Trailer ergänzen und auf ein Vielfaches von 44 Bytes auffüllen (Padding)
 - Jeden 44-Byte-Block mit 2 Byte Header (u.a. Sequence Number), 2 Byte Trailer ergänzen → 48 Byte für ATM-Zelle

AAL 3/4

