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Introduction

This document contains a selected chapter from the introductory operating systems book
“The Design and Implementation of the Urix Operating System” [EF15]. In this excerpt
we only treat the handling of interrupts and faults on an Intel-i386-based machine.

The ULix source code consists of one large KIEX file with embedded code, following the
Literate Programming style [Knu84] from which two files ulix.c (C code) and start.asm
(Assembler code) are automatically generated using the noweb tool [Ram94]. Those in turn
are compiled or assembled and the resulting object files are linked to create the kernel
binary.

Initialization of the interrupt and fault handlers occurs early in the system’s overall
initialization process.

In the following chapter you will find some code chunks which are continuations of
earlier chunk definitions (starting in other chapters that are not part of this excerpt):

* (constants 6) contains definitions of (macro) constants which are declared via the #de-
fine pre-processor statement.

* (macro definitions 21c) are also #define’d macros, but “real” ones which use parameters
and thus resemble functions.

o (type definitions 11a) is the place for all structure definitions.

(global variables 12a) collects all variables which are visible throughout the whole
ULIX system.

e (function prototypes 7a) contains prototypes of C functions, and

(function implementations 7b) the implementations of these functions.

The general structure of the main source file, ulix. c is the following:
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[2a]

(2]

(ulix.c 2a)=
(copyright notice )
(constants 6) (public constants )
(macro definitions 21c)  (public macro definitions )
(public elementary type definitions )
(type definitions 11a)  (public type definitions 16a)
(function prototypes 7a)  (public function prototypes )
(global variables 12a)
(function implementations 7b) ~ (public function implementations )
(kernel main 2b)

This chunk is extracted to the ulix.c source code file. The last past of this chunk, (kernel
main 2b) contains the implementation of the kernel’s main,}, () function:

(kernel main 2b)= (2a)
void main ()
(initialize kernel global variables )
(setup serial port) // for debugging
(setup memory )
(setup video )
(setup keyboard )
(initialize system 2c)
(initialize syscalls )
(initialize filesystem )
(initialize swap )
initialize_module (); // external code
(start init process )

and in there you can find the reference to (initialize system 2c) which uses further code
chunks

(initialize system 2c)= (2b)
(install the interrupt descriptor table 20d)
(install the fault handlers 21d)
(install the interrupt handlers 13a)
(install the timer )
(enable interrupts 25b)

most of which are shown in this excerpt of the Urix book. Assembler source code is
collected in the (start.asm 18) chunk which gets extracted to start.asm.

All code chunks which appear without a page number (for example: (install the timer )
from the last chunk) are defined outside this document; you can look at the Urix book to
see the full ULix code.




Interrupts and Faults

All modern CPUs and even many of the older ones such as the Zilog Z80 8-bit processor
can be interrupted: the CPU has an input line which can be triggered by an external device
connected to this line. When such an interrupt occurs, the current activity is suspended,
and the CPU continues operation at a specified address: it executes an interrupt handler.

In principle a device could be directly connected to the CPU, but modern machines con-
tain many devices which want to interrupt the processor, e.g. the disk controllers, the
keyboard controller, the serial ports, or the on-board clock. Thus an extra device, called
the interrupt controller, intermediates between the other devices and the CPU. One of the
advantages of such an interrupt controller is that it is programmable: it is possible to
enable or disable specific interrupts whereas the CPU itself can only completely enable
or disable all interrupts, using the sti (set interrupt flag) and cli (clear interrupt flag) in-
structions. (These machine instructions exist on Intel-x86-compatible CPUs; other chips
have similar instructions.) Being programmable also means that interrupt numbers can
be remapped (we will see later why this is helpful). Interrupt controllers with these fea-
tures are called programmable interrupt controllers (PICs), and we’ll use that abbreviation
throughout the rest of this chapter.

After the implementation of interrupts we will also take a look at fault handling since the
involved mechanisms are very similar to those which we need for handling interrupts. The
main difference between interrupts and faults is that faults occur as a direct consequence
of some specific instruction that our code executes. In that sense they are synchronous.
Interrupts on the other hand occur without any connection to the currently executing
instruction, since they are not triggered (immediately) by our code but by some device.
That is why they are called asynchronous.

interrupt
controller

sti, cli

PICs

synchronous

asynchronous
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2.1 Examples for Interrupt Usage

Interrupt handling is a core functionality which is used in lots of places: without interrupts
we would not be able to build a useful operating system.
Let’s look at some example features of UrLix which depend heavily on interrupts:

Multi-tasking ULIx can execute several processes in parallel and switch between them
using a simple round-robin scheduling mechanism. That is only possible because
the clock chip on the motherboard regularly generates timer interrupts, and ULIX in-
stalls a timer interrupt handler which—when activated—calls the scheduler to check
whether it is time to switch to a different process. If there were no interrupts, we
could only implement non-preemptive scheduling which relies on the processes to
give up the CPU voluntarily.

Keyboard input Whenever you press or release a key on a PC, either event generates an
interrupt. ULIx picks up these interrupts and the keyboard interrupt handler reads
a key press or key release code from the controller.

A keyboard driver does not need interrupts, but the alternative is to constantly poll
(query) the keyboard controller in order to find out whether a new event has oc-
curred. That’s possible but wastes a lot of CPU time. Polling does not work well
in a multi-tasking environment. (However for a single-tasking operating system it
may be good enough.)

Media Reading and writing hard disks and floppy disks also depends on interrupts: In
the ULix implementation of filesystems (and disk access) a process which wants
to read or write makes a system call which sends a request to the drive controller.
Then ULix puts the calling process to sleep. Once the request has been served, the
drive controller generates an interrupt, and the interrupt handler for the hard disk
controller or the floppy disk controller (these are two separate handlers) deals with
the data and wakes up the sleeping process.

Again, this could be done without interrupts. But the process would have to remain
active and continuously poll the controller to find out whether the data transfer has
been completed.

Serial ports Finally, the serial ports are similar to the keyboard, since all of them are
character devices: they transfer single bytes (instead of blocks of bytes).

2.2 Interrupt Handling on the Intel Architecture

The classical IBM PC used the Intel 8259 Programmable Interrupt Controller, compatible
descendents of which are still used in modern computers. The 8259 has eight input lines
(through which up to eight separate devices may connect) and one output line which
forwards received interrupt signals to the CPU. It is possible to use more than one 8259 PIC




2.2 Interrupt Handling on the Intel Architecture

since these controllers can be cascaded which means that a second controller’s output pin
is connected with one of the first controller’s input pins (typically the one for device 2, see
Figure 2.1). With that cascade, devices connected to the first controller keep their normal
numbers (0, 1, 3—-7 with 2 reserved for the second controller), and devices connected to the
second controller use device numbers between 8 and 15, allowing for a total of 15 (= 16 —1)
separate device numbers. The first or primary controller is called Master PIC, the second
one is the Slave PIC (as it is not directly connected to the CPU but relies on the master PIC
to have its interrupts signals forwarded). The numbers 0-15 are called Interrupt Request

Numbers (IRQs).

CMOS Clock ——Jp»
(free) ——

(free) ——

(free) ——

(free) ——P

Math Coprocessor ——Jp
IDE1 ——p»

IDE2 ——Jp»

10

11

12

13

14

15

8259
PIC
(#2)

Timer ———p»
Keyboard ———Jp»

‘ COM2 ——p»

COM1 ——jp»
LPT3 —
Floppy ——»

LPT1, LPT2 ——

8259
PIC

(#1)

INT

CPU

Figure 2.1: Two PICs are cascaded, which allows for 15 distinct interrupts.

As you can see from the figure, there is a fixed mapping of some devices to specific IRQs.

We will use the following IRQs in the ULix implementation:

e 0: Timer Chip. On a PC’s mainboard you can find a (programmable) timer chip which
regularly generates interrupts. We will use timer interrupts to call the scheduler (be-

sides other tasks).

e 1: Keyboard. This is the interrupt generated by PS/2 keyboards. A USB keyboard
would be handled differently, but we do not support USB devices.

e 2: Slave PIC. As already mentioned, IRQ 2 is reserved for connecting the secondary

(slave) PIC.

e 3: Serial Port 2. The second serial port will be used for our implementation of what
we’ve called the serial hard disk—it is discussed in the full Urix book.

¢ 4: Serial Port 1. We only use the first serial port for output (when running ULix in a

PC emulator), thus we will not install an interrupt handler for this IRQ.

e 6: Floppy. This is the IRQ for the floppy controller. It can handle up to two floppy

drives.

e 14: Primary IDE Controller. And finally, 14 is the IRQ of the primary IDE controller.
Many PC mainboards contain two controllers, with each of them allowing two drives
to connect. The secondary IDE controller would generate the interrupt number 15,

Cascading PICs

Master PIC
Slave PIC
IRQ
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(6]

Going
where?

1/O Ports

in, out

but we’re going to support only one controller.

We can define names for the IRQ numbers right now:

(constants 6)= (2a) 81>
#define IRQ_TIMER
#define IRQ_KBD
#define IRQ_SLAVE
#define IRQ_COM2
#define IRQ_COM1
#define IRQ_FDC
#define IRQ_IDE 14 // primary IDE controller; secondary has IRQ 15

Defines:
IRQ_SLAVE, used in chunk 13a.

// Here the slave PIC connects to master

SR WN RS

2.2.1 Using Ports for 1/0 Requests

We want to initialize the PICs, which out to find out the PIC’s current status
means directly talking to these con-  and tell it what to do.
trollers. Like with most other devices we Here we provide the code which lets us
can use the machine instructions in and access the controllers.

Access to many hardware components (including the PICs) is possible via I/O ports. Using
in and out machine instructions it is possible to transfer bytes, words or doublewords
between a CPU register and a memory location or register on some device (such as a hard
disk controller).

The Intel 80386 Programmer’s Reference Manual [Int86, pp. 146—147] explains:

“The I/O instructions IN and OUT are provided to move data between I/O ports
and the EAX (32-bit I/O), the AX (16-bit I/O) or AL (8-bit I/O) general registers.
IN and OUT instructions address I/O ports either directly, with the address of
one of up to 256 port addresses coded in the instruction, or indirectly via the
DX register to one of up to 64K port addresses.

IN (Input from Port) transfers a byte, word or doubleword from an input
port to AL, AX or EAX. If a program specifies AL with the IN instruction, the
processor transfers 8 bits from the selected port to AL. If a program specifies
AX with the IN instruction, the processor transfers 16 bits from the port to AX.
If a program specifies EAX with the IN instruction, the processor transfers 32
bits from the port to EAX.

OUT (Output to Port) transfers a byte, word or doubleword to an output port
from AL, AX or EAX. The program can specify the number of the port using the
same methods as the IN instruction.”

For accessing 8-bit, 16-bit and 32-bit ports, the Intel assembler language provides sepa-
rate commands inb / outb (byte), inw / outw (word) and inl/ outl (long: doubleword) which
make it explicit what kind of transfer is wanted. We’ll use them in the functions
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(function prototypes 7a)= (2a) 12bp>
byte inportb (word port);
word inportw (word port);
void outportb (word port, byte data);
void outportw (word port, word data);

There are several possible C implementations with inline assembler code, the following
code is most readable:

(function implementations 7b)= (2a) 12¢>
byte inportb (word port)
byte retval; asm volatile ("inb %%dx, %%al" : "=a"(retval) : "d"(port));
return retval;

word inportw (word port)
word retval; asm volatile ("inw %%dx, %%ax" : "=a" (retval) : "d" (port));
return retval;

void outportb (word port, byte data)
asm volatile ("outb %%al, %%dx" : : "d" (port), "a" (data));

void outportw (word port, word data)
asm volatile ("outw %%ax, %%dx" : : "d" (port), "a" (data));

Defines:
inportb, used in chunk 13f.
outportb, used in chunks 9, 13d, and 20a.
outportw, used in chunk 7a.

We could provide inportl and outportl (for 32-bit values) in a similar fashion, using in1,
outl and the 32-bit register EAX (instead of the 16-bit and 8-bit versions AX and AL), but
we do not need them. (Remember that EAX, AX and AL are (parts of) the same register, see
Figure 2.2. On a 64-bit machine, RAX is the 64-bit extended version of EAX.)

31 16 15 8 17 0
AH AL

\— AX /

EAX

Figure 2.2: The lower half of EAX is AX which in turn is split into AH (high) and AL (low).

(7a]

[7b]
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2.2.2 Initializing the PIC

Now that we have functions for talkingto ~ numbers from 0-15 to 32-47 because the
devices we can set up the two PICs. We  first 32 numbers are reserved for faults
will configure one as master and the other ~ (see Section 2.3).

as slave, and we also remap the interrupt

The PICs can be accessed via the following four ports:

(constants 6)+= (22) 96 19a>
// I/0 Addresses of the two programmable interrupt controllers
#define I0_PIC_MASTER_CMD @x20 // Master (IRQs 0-7), command register
#define I0_PIC_MASTER_DATA ©0x21 // Master, control register

#define I0_PIC_SLAVE_CMD 0xA® // Slave (IRQs 8-15), command register
#define I0_PIC_SLAVE_DATA OxAl // Slave, control register

Defines:
10_PIC_MASTER_CMD, used in chunks 9a and 20a.
I0_PIC_MASTER_DATA, used in chunks 9 and 13.
10_PIC_SLAVE_CMD, used in chunks 9a and 20a.
I0_PIC_SLAVE_DATA, used in chunks 9 and 13.

They need to be initialized by sending them four “Initialization Command Words” (ICW)
called ICW1, ICW2, ICW3 and ICW4 in a specific order, using specific ports. Each of the
PICs has a command register and a data register. During normal operation we can write
to the data register (using the ports I0_PIC_MASTER_DATAg and I0_PIC_SLAVE_DATAg for PIC1
or PIC2, respectively) to set the interrupt mask: That’s a byte where each bit tells the
controller whether it shall respond to a specific interrupt (1 means: mask, i. e, ignore the
interrupt; 0 means: forward it to the CPU). We will start with an interrupt mask of 0xFF
for each controller (all bits are 1), thus all hardware interrupts will be ignored.

The following code was taken from Bran’s Kernel Development Tutorial [Fri05] (e. g.
from the source file irq.c) and modified.

For programming the controller, we can send configuration data to the data port, but
we have to initialize the programming by writing to the command port. The complete
sequence is as follows:

 First we send ICW1 to both PICs. ICW1 is a byte whose bits have the following
meaning [Int88, p. 11]:

0 Dy: ICW4 needed? We set this to 1 since we want to program the controller.

1 Dy: Single (1) / Cascade (0) mode: We set this to 0 since there’s a slave.

2 D,: Call Address Interval (ignored), the default value is 0.

3 Ds: Level (1) / Edge (0) Triggered Mode: we set this to 0.

4 Dy: Initialization Bit: We set it to 1 because we want to initialize the controller.
5,6,7 Ds, Dy, Dy: not used on x86 hardware, set to 0.

This results in the byte 00010001 (6x11). The value is the same for both PICs. As
mentioned before, ICW1 must be sent to the PICs’ command registers.
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(remap the interrupts to 32..47 9a)= (13a) 9b>
outportb (IO_PIC_MASTER_CMD, ©Ox11); // ICWI: initialize; begin programming
outportb (IO_PIC_SLAVE_CMD, @x11); // ICWI: dito, for PIC2

Uses I0_PIC_MASTER_CMD 8, I0_PIC_SLAVE_CMD 8, and outportb 7b.

¢ Inthe next step we send ICW?2 to the PICs’ data registers. The lowest three bits specify
the offset for remapping the interrupts. Since the first 32 interrupts must be reserved
for processor exception handlers (e. g. “Division by Zero” and “Page Fault” handlers),
we map the interrupts 0-15 to the range 32-47 (0x20 — @x2f).

Each PIC would normally generate interrupts in the range 0-7, thus the offset is not
the same for both PICs: For PIC1 it is 0x20 (32; mapping 0-7 to 32-39), and for PIC2 it
is 0x28 (40; mapping 0-7 to 40-47).

(remap the interrupts to 32..47 9a)+= (13a) <9a 9ci>
outportb (IO_PIC_MASTER_DATA, 0x20); // ICW2 for PIC1: offset 0x20
// (remaps 0x00..0x07 —> 0x20..0x27)
outportb (IO_PIC_SLAVE_DATA, 0x28); // ICW2 for PIC2: offset 0x28
// (remaps 0x08..0x0f —> 0x28..0x2f)
Uses 10_PIC_MASTER_DATA 8, I0_PIC_SLAVE_DATA 8, and outportb 7b.

e The next command word is ICW3. Its functionality depends on whether we send it
to the master (PIC1) or the slave (PIC2): The PICs already know that they are master
and slave (because we sent that information as part of ICW1) [Int88, p. 12].

The master expects a command word byte in which each set bit specifies a slave con-
nected to it. We have only one slave and want to make it signal new interrupts on
interrupt line 2 of the master. Thus, only the third bit (from the right) must be set:
00000100, = 0x04.

The slave needs a slave ID. We give it the ID 2 = 0x02.

(remap the interrupts to 32..47 9a)+= (132) <9b 9dp>
outportb (IO_PIC_MASTER_DATA, 0x@4); // ICW3 for PIC1: there's a slave on IRQ 2
// (0b00000100 = 0x04)
outportb (IO_PIC_SLAVE_DATA, 0x02); // ICW3 for PIC2: your slave ID is 2
Uses I0_PIC_MASTER_DATA 8, I0_PIC_SLAVE_DATA 8, and outportb 7b.

* To end the sequence, we send ICW4 which is just 0x01 for x86 processors [Int88, p.
12].

(remap the interrupts to 32..47 9a)+= (132) €9c
outportb (IO_PIC_MASTER_DATA, 0x01); // ICW4 for PIC1 and PIC2: 8086 mode
outportb (I0_PIC_SLAVE_DATA, 0x01):

Uses 10_PIC_MASTER_DATA 8, 10_PIC_SLAVE_DATA 8, and outportb 7b.

With the remapping in place we can now create entries for the interrupt handler table—
we need some new data structures for them.

[%a]

remap the
interrupts

[9b]

[9c]

[od]




10

2 Interrupts and Faults

2.2.3 Interrupt Descriptor Table

Going  The PICs are initialized and will do the
where?  right thing when an interrupt occurs, but
we haven’t told the CPU yet what to do

when it receives one. This calls for a new

data structure, the Interrupt Descriptor
Table, which we must define according
to the Intel standards and fill with proper
values.

While the first Intel-8086/8088-based personal computers used a fixed address in RAM to
store the interrupt handler addresses, modern machines let us place the table anywhere
lidt  in memory. After preparing the table we must use the machine instruction 1lidt (load
interrupt descriptor table register) to tell the CPU where to search.
The procedure we need to follow is similar to the one for activating segmentation via a
GDT (Global Descriptor Table; see full ULix book):

1. We first store interrupt descriptors (each of which is eight bytes large) in a table

consisting of struct idt_entry,;, entries,

2. then we create some kind of pointer structure struct idt_ptryy;, which contains the

length and the start address of the table,

3. and finally we execute lidt (compare this to lgdt which loads the GDT).

Figure 2.3 shows the layout of an IDT entry. The Flags halfbyte (second line, left in the

figure) consists of

e the present flag (bit 3) which must always be set to 1,

e two bits (2 and 1) for the Descriptor Privilege Level (DPL). We will always set this to
11, = 3 since we want all interrupts to be available all the time (when we’re in kernel

or user mode) and

* aso-called “storage segment” flag (bit 0; which must be set to 0 for an “interrupt gate”,

see next entry).

The Type haltbyte declares what kind of descriptor this is: we will always set it to 1110y,

making this descriptor an

e 80386 32-bit interrupt gate descriptor (which is what we want).

Address: 31-16

7.6

P|DPL 0| Type

| 0 0 0 | (unused)

5.4

GDT Selector

3.2

Address: 15-0

1.0

Figure 2.3: An Interrupt Descriptor contains the address of an interrupt handler and some

configuration information.
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Besides this type, there are alternatives:

e 0101, for an 80386 32-bit task gate,

e 0110, for an 80286 16-bit interrupt gate,

e 0111, for an 80286 16-bit trap gate and

e 1111, for an 80386 32-bit trap gate,
but we will not go into the details about these. Instead of interrupt gates we could also
use trap gates, the difference between those being that “for interrupt gates, interrupts
are automatically disabled upon entry and reenabled upon IRET which restores the saved

EFLAGS” [OSD13].
We will use the following datatype definitions:

(type definitions 11a)= (2a) 11br
struct idt_entry
unsigned int addr_low : 16; // lower 16 bits of address

unsigned int gdtsel : 16; // use which GDT entry?
unsigned int zeroes : 8 // must be set to 0
unsigned int type : 4; // type of descriptor
unsigned int flags 4

unsigned int addr_high : 16; // higher 16 bits of address
__attribute_ ((packed));

Defines:
idt_entry, used in chunks 12a and 20d.

The selector must be the number of a code segment descriptor (in the GDT); we will always
set this to 0x@8 since our kernel (ring 0) code segment uses that number (see code chunk
(install flat gdt ) which is only available in the full ULix book).

The IDT pointer has the same structure as the GDT pointer: it informs about the length
and the location of the IDT:

(type definitions 11a)+= (2a) <1la
struct idt_ptr
unsigned int limit 1 16;
unsigned int base 1 32;
__attribute__((packed));
Defines:

idt_ptr, used in chunk 12a.

In theory, an interrupt number can be any byte, i. e., a value between 0 and 255. We will
use a full IDT with 256 entries even though most of the entries will be null descriptors—if
somehow an interrupt is generated which has a null descriptor, the CPU will generate an
“unhandled interrupt” exception. We will talk about exceptions right after we’ve finished
the interrupt handling code.

[11a]

[11b]
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[12a]

[12b]

[12¢]

[12d]

[12€]

(global variables 12a)= (2a) 12e>
struct idt_entry idt[256] = 0 ;
struct idt_ptr idtp;

Defines:
idt, used in chunks 12c¢ and 20d.
idtp, used in chunks 20d and 21a.
Uses idt_entry 11a and idt_ptr 11b.

The variables idtqz, and idtp;,, will now be used in a way that is similar to how we used
gdt (a struct gdt_entry[] array) and gp (a struct gdt_ptr structure) when we wrote the
GDT code (again, this information is only available in the ULix book).

We start with a function

(function prototypes 7a)+= (22) <7a 12d>
void fill_idt_entry (byte num, unsigned long address,
word gdtsel, byte flags, byte type);

which writes an entry of the IDT:

(function implementations 7b)+= (2a) «7b 13dp>
void fill_idt_entry (byte num, unsigned long address,
word gdtsel, byte flags, byte type)
if (num = @ && num < 256)
idt[num].addr_low = address & OxFFFF; // address is the handler address
idt[num]l.addr_high = (address >> 16) & OxFFFF;

idt[num].gdtsel = gdtsel; // GDT sel.: user mode or kernel mode?
idt[num].zeroes = 0;
idt [num].flags = flags;
idt [num].type = type;
Defines:

fill_idt_entry, used in chunks 12b, 13a, and 21c.
Uses idt 12a.

Parts of all of our interrupt handlers will be assembler code (which we store in start.asm);
we’ll explain soon why that has to be. For the moment, let’s declare 16 external function
symbols irq@g, irqly, ..., irql5;3 whose addresses we’re about to enter into the IDT with
fill_idt_entry s.:

(function prototypes 7a)+= (2a) <12b 13b>

extern void irq@(), irql(), irq2(), irg3(), irq4(), dirg5(), irg6(), irq7();
extern void irg8(), irq9(), irql@(), irqll(), irql2(), irql3(), irql4(), irql5();

We will store the function addresses in an array which simplifies accessing them:

(global variables 12a)+= (2a) <12a 19b>
void (xirqs[16])() =
irq@, irql, irg2, irq3, dirg4, dirg5, dirg6, irq7, // store them in

irg8, irq9, irql®@, irqll, irql2, irql3, irql4, irqls // an array
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Defines:
irgs, used in chunk 13a.

Uses irq0 18, irql 18, irq10 18, irqll1 18, irq12 18, irq13 18, irq14 18, irql5 18, irg2 18, irg3 18, irg4 18, irg5 18,
irg6 18, irq7 18, irq8 18, and irq9 18.

The following code chunk enters their address in the IDT:

(install the interrupt handlers 13a)= (20)
(remap the interrupts to 32..47 9a)
set_irgmask (@xFFFF); // initialize IRQ mask
enable_interrupt (IRQ_SLAVE); // IRQ slave

for (int 1 = 0; 1 < 16; 1i++)
fill_idt_entry (32 + i,
(unsigned int)irgs[i],
0x08,
0bl11o, // flags: 1 (present), 11 (DPL 3), 0
0b1110); // type: 1110 (32 bit interrupt gate)

Uses enable_interrupt 14, fill_idt_entry 12c, IRQ_SLAVE 6, irgs 12e, and set_irgmask 13d.

This code chunk sets the IRQ mask to @xFFFF = 1111111111111111, via

(function prototypes 7a)+= (2a) «12d 13c>
static void set_irgmask (word mask);

which disables all interrupts, and then it enables the interrupt for the slave PIC with

(function prototypes 7a)+= (2a) <13b 13en
static void enable_interrupt (int number);

—both functions have not been mentioned so far. The IRQ mask is a 16-bit value in which
each bit says whether some interrupt is enabled (value 0) or not (value 1). We must talk
to both PICs to set the mask, the master PIC gets the lower eight bits (for the interrupts
0-7), the slave PIC gets the upper eight bits (for the interrupts 8-15):

(function implementations 7b)+= (2a) <12c 13fp>
static void set_irgmask (word mask)
outportb (I0_PIC_MASTER_DATA, (char)(mask % 256) );
outportb (IO_PIC_SLAVE_DATA, (char)(mask >> 8) );

Defines:
set_irgmask, used in chunks 13 and 14.
Uses I0_PIC_MASTER_DATA 8, I0_PIC_SLAVE_DATA 8, and outportb 7b.

We can also read the mask from the two PICs with a similar function we call

(function prototypes 7a)+= (2a) <13c 20b>
word get_irgmask ();

in which we read the two data registers instead of writing them:

(function implementations 7b)+= (2a) «13d 14>
word get_irgmask ()

return inportb (IO_PIC_MASTER_DATA)
+ (inportb (IO_PIC_SLAVE_DATA) << 8);

[13a]

IRQ mask
[13b]

[13c]

[13d]

[13€]

(13f]
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Going
where?

iret

Defines:
get_irgmask, used in chunks 13e and 14.
Uses inportb 7b, I0_PIC_MASTER_DATA 8, and I0_PIC_SLAVE_DATA 8.

In other chapters (of the Urix book) we will often enable a specific interrupt for some
device after we’ve prepared its usage, e. g. for the floppy controller. For that purpose, we
will always use enable_interrupty, () like we did above. It simply reads the current IRQ
mask, clears a bit, and writes the new value back:

(function implementations 7b)+= (2a) <13f 20a>
static void enable_interrupt (int number)
set_irgmask (
get_irgmask () // the current value
& ~(1 << number) // 16 one-bits, but bit "number" cleared
);

Defines:
enable_interrupt, used in chunk 13.
Uses get_irgmask 13f and set_irgmask 13d.

2.2.4 Writing the Interrupt Handler

Everything is prepared for interrupt hand-  tions. This step requires some assembler
lers — now we need to define them, i.e., code and some C code.
implement the irq@;5(), ... 1rq15;5() func-

We have installed handlers for all 16 interrupts, but what do they do? We will define part
of their code in the assembler file, but we start with a description of what we expect to
happen in general.

When an interrupt occurs, the CPU suspends the currently running code, saves some
information on the stack, and then jumps to the address that it finds in the IDT. (It also uses
a different stack and switches to kernel mode if it was in user mode when the interrupt
occurred.) Then the interrupt handler runs, and once it has finished its job, it returns
with the iret instruction. iret is different from the regular ret instruction which normal
functions use for returning to the calling function: it is the special “return from interrupt”
instruction which restores the original state (user or kernel mode, stack, EFLAGS register)
so that the regular code can continue as if the interrupt had never happened.

Switching to the interrupt handler can mean a change of the privilege level that the
CPU executes in: So far we’ve only let ULix work in ring 0 (kernel mode), but later when
we introduce processes (in the ULix book) it can happen that an interrupt occurs while the
CPU runs in ring 3 (user mode). If that is the case, the privilege level changes (from 3 to
0). When such a transition occurs, the information (return address etc.) is not written to
the process’ user mode stack, but on the process’ kernel stack which is located elsewhere
and normally used during the execution of system calls. For now, the relevant piece of
information is that different information gets stored on the “target stack™ In case of a
privilege change the CPU first writes the contents of the SS and ESP registers on the (new)
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stack—this does not happen if the CPU was already operating in ring 0. Next, EFLAGS, CS
and EIP are written to the stack: that is all we need for returning to the interrupted code.
Figure 2.4 shows the different stack contents when the interrupt handler starts executing
[Int86, p. 159].

CPU already in level 0 —
no privilege level change

CPU in level 3 — level changes
to 0, switch to kernel stack

31

0
<— SS:ESP
[old ss

from TSS
1d ESP
Old SS:ESP —p ‘ Old S
Old EFLAGS Old EFLAGS
jold cs |od cs
Old EIP Old EIP
New SS:ESP | -4— New SS:ESP
Direction Direction
of Stack of Stack
Growth Growth

Figure 2.4: When entering the interrupt handler, the stack contains information for return-
ing from the handler. Left: without privilege level change; right: with change
from level 3 to 0, extra data marked red.

We cannot directly use a C function as an interrupt handler because once it would finish
its work, it would do a regular RET which does not do what we want. (Of course we could
use inline assembler code inside the C function to make it work anyway, but it makes
more sense to directly implement parts of the handlers in assembler.)

2.2.4.1 The Context Data Structure

We want to be able to define handler functions in C which get called from the assembler
code. Those functions will all have the following prototype:

void handler_function (context_t *r);

where context_ty, is a central data structure that can hold all the registers we use on the
Intel machine. It will also be used in fault handlers, system call handlers and several other
functions which need information about the current state.

We define the context_ty, structure so that it matches the way in which we set up the
stack in the assembler part of the handler:

context
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[16a]

[16b]

(public type definitions 16a)= (2a)
typedef struct
unsigned int gs, fs, es, ds;
unsigned int edi, esi, ebp, esp, ebx, edx, ecx, eax;
unsigned int int_no, err_code;
unsigned int eip, cs, eflags, useresp, ss;
context_t;

Defines:
context_t, used in chunks 16b, 20, and 25a.

2.2.4.2 Assembler Part of the Handler

In order to have a handler function see useful values in the structure that r points to, we
need to push the register contents in the reverse order onto the stack:

(push registers onto the stack 16b)= (17b 18 24b)
pusha
push ds
push es
push fs
push gs
push esp ; pointer to the context_t

The first instruction pusha (push all general registers) pushes a lot of registers onto the
stack: EAX, ECX, EDX, EBX, the old value of ESP (before the pusha execution began), EBP, ESI,
and EDI—in that order. We add the segment registers DS, ES, FS and GS, and you can see that
we’ve successfully handled the first two lines of the context_t¢, type definition. When
the interrupt occurred, the registers EFLAGS, €S and EIP (and possibly also SS and the user
mode’s ESP) were also pushed on the stack which gives us the values in the fourth line of
the context_t4, definition.

What’s missing are the values on the third line: We want to tell the handler which
interrupt occurred so that we can use the same interrupt handler for several interrupts—
for example, if we supported both IDE controllers (with interrupts 14 and 15) we could
use that trick to run the same IDE handler when either of those interrupts occurred; thus,
between the automatically happening push operations and the ones we perform in (push
registers onto the stack 16b) we also push the interrupt number and another value err_code
which can hold an error code. Interrupts don’t have an error code, but we will recycle the
same code later when we deal with faults, and some of those do provide an error code.

The final push esp statement in (push registers onto the stack 16b) is necessary because
we cannot just place the structure contents on the stack: the handler function expects
a pointer (context_ty,, *r), and ESP contains just that pointer: the start address of the
structure. Figure 2.5 shows the layout of the stack after the assembler part has finished
the preparations.

Later, when the handler’s task is completed, we will need to pop the registers from the
stack—in the reverse order:
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- 0 «— SS:ESP
/ IOld SS from TSS
Old ESP
Old EFLAGS
|old s
Old EIP
err_code
int_no
EAX
ECX

context_t EDX l Direction

EBX of Stack
ESP Growth
EBP
ESI
EDI
DS
ES

FS
\\\ GS

context —

<l
-

-4—— New SS:ESP

Figure 2.5: Stack after interrupt handler initialization by the assembler part.

(pop registers from the stack 17a)= (17b 18 24b)
pop esp
pop gs
pop fs
pop es
pop ds
popa

Now here’s an example of how we could implement the interrupt handler for IRQ 15:

(irq15 example 17b)=
push byte 0 ; error code
push byte 15 ; Interrupt number
(push registers onto the stack 16b)
call irg_handler ; call C function
(pop registers from the stack 17a)
add esp, 8 ; for errcode, irq no.
iret

Uses irg_handler 20a.

[17a]

[17b]
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This contains all we need:

1. The two push commands add the error code and the interrupt number (which is 15 in
this example).

2. With (push registers onto the stack 16b) we complete the context_t,q, data structure

and also push a pointer to it.

3. Now the stack is prepared properly to call the C function irq_handler,,.

4. After returning, we first have to undo the push operations with (pop registers from
the stack 17a).

5. Then we modify the stack address: we add 8, thus undoing the two push operations

for the error code and the interrupt number.

6. Finally we return from the handler with iret.

We need almost the same code 16 times (for IRQs 0 to 15)—the only difference between the
16 versions is the interrupt number that we push in the second instruction. We simplify
our code by having our individual handlers just push the two values (0 and the interrupt
number) and then jump to an address which provides the common commands. The 0

value is a placeholder for an error code which cannot occur in interrupt handlers, but (as
mentioned before) we will also implement fault handlers which shall use the same stack
layout, and some of them will write a fault-specific error code into that location.

(start.asm 18)=

global irge, irql, irg2,
global irg8, irq9, irql@, irqll, irql2, irql3, irql4, irql5

%macro irg_macro 1

jmp irg_common_stub

push byte

push byte
%sendmacro
irg@: 1irg_macro
irql: irg_macro
irg2: irg_macro
irg3: irg_macro
irg4: 1irg_macro
irg5: 1irg_macro
irg6: irg_macro
irq7: irqg_macro
irg8: 1irg_macro
irg9: 1irg_macro
irql0: irg_macro
irqll: irg_macro
irql2: irg_macro
irql3: irg_macro
irql4: irqg_macro
irql5: irg_macro

0

%1

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

; error code (none)
; Interrupt number
; rest 1Is identical

2lap

for all handlers
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extern irg_handler ; defined in the C source file
irg_common_stub: ; this is the identical part
(push registers onto the stack 16b)
call irg_handler ; call C function
(pop registers from the stack 17a)
add esp, 8
iret
Defines:

irqe, used in chunk 12e.
irql, used in chunk 12e.
irq10, used in chunk 12e.
irqll, used in chunk 12e.
irq12, used in chunk 12e.
irq13, used in chunk 12e.
irql4, used in chunk 12e.
irq15, used in chunk 12e.
irg2, used in chunk 12e.
irg3, used in chunk 12e.
irg4, used in chunk 12e.
irg5, used in chunk 12e.
irg6, used in chunk 12e.
irg7, used in chunk 12e.
irg8, used in chunk 12e.
irq9, used in chunk 12.
Uses irg_handler 20a.

Our interrupt handling code is a slightly improved version of the code which Bran’s

Kernel Tutorial [Fri05] uses; the original code contains some extra instructions that we
don’t need for the ULix kernel.

2.2.4.3 C Part of the Handler

Finally, we show what happens when the assembler code calls the external handler func-
tion irg_handleryy, () that we implement in the C file.

The first thing our handler needs to do is acknowledge the interrupt. For that purpose
it sends the command
(constants 6)+= (22) <8

#define END_OF_INTERRUPT 0x20

Defines:
END_OF_INTERRUPT, used in chunk 20a.

to all PICs which are involved: In case of an interrupt number between 0 and 7 that is only
the primary PIC; in case the number is 8 or higher, both controllers need to be informed.
Omitting this step would stop the controller from raising further interrupts which would
basically disable interrupts completely.

Next we check whether a specific handler for the current interrupt has been installed
in the
(global variables 12a)+= (22) 912e 24c>

void xinterrupt_handlers([16] = { 0 };

Defines:
interrupt_handlers, used in chunk 20.

[19a]

[19b]
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[20a]

[20b]

[20c]

IDTR

[20d]

[20e]

lidt

array of interrupt handlers.

(function implementations 7b)+= (2a) <14 20cp>
void irg_handler (context_t xr)
int number = r->int_no - 32; // interrupt number
void (xhandler) (context_t *r); // type of handler functions

if (number = 8)
outportb (IO_PIC_SLAVE_CMD, END_OF_INTERRUPT); // notify slave PIC

outportb (IO_PIC_MASTER_CMD, END_OF_INTERRUPT); // notify master PIC (always)

handler = interrupt_handlers[number];
if (handler != NULL) handler (r);

Defines:
irg_handler, used in chunks 17b and 18.
Uses context_t 16a, END_OF_INTERRUPT 19a, interrupt_handlers 19b, I0_PIC_MASTER_CMD 8, I0_PIC_SLAVE_CMD 8,

and outportb 7b.
As a last step we provide a function

(function prototypes 7a)+= (22) 913e 20en>
void install_interrupt_handler (int irg, void (xhandler)(context_t *r));
Uses context_t 16a and install_interrupt_handler 20c.

which lets us enter (pointers to) handler functions in this array; it is pretty simple:

(function implementations 7b)+= (2a) <20a 25ar>
void install_interrupt_handler (int irg, void (xhandler)(context_t *r))
if (irqg = 0 && irq < 16)
interrupt_handlers[irg] = handler;

Defines:
install_interrupt_handler, used in chunk 20b.
Uses context_t 16a and interrupt_handlers 19b.

Early in the (initialize system 2c) step of the kernel’s mainy, () function (which is not

shown in this excerpt) we need to load the Interrupt Descriptor Table Register (IDTR) so
that the CPU can find the table:

(install the interrupt descriptor table 20d)= (20)
idtp. limit = (sizeof (struct idt_entry) % 256) - 1; // must do -1
idtp.base = (int) &idt;
idt_load ();

Uses idt 12a, idt_entry 11a, idt_load 21a, and idtp 12a.

It uses the assembler function

(function prototypes 7a)+= (2a) <20b 21bp
extern void idt_load ();

which writes the address of idtp,,, to the IDTR register via the l1idt instruction:
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(start.asm 18)+=
extern idtp
global idt_load
idt_load: lidt [idtpl]
ret

<18 22ap
; defined in the C file

Defines:
idt_load, used in chunk 20.
Uses idtp 12a.
In other chapters of the ULix book we will often use this function in commands similar to

install_interrupt_handler (IRQ_SOMEDEV, somedev_handler);

2.3 Faults

As we’ve mentioned in the introduction to this chapter, handling a fault is very similar to
handling an interrupt. Since you’ve just seen the interrupt code, you will recognize many
concepts at once while we present the fault handling code.

Like we defined the interrupt handlers irq@,5() to irql5;5() in the assembler file start.

asm, we do the same with 32 fault handler functions fault@ss.() to fault31s.().

(function prototypes 7a)+= (2a) <20e 24d>
extern void
faulto(),

fault7(),

faultl(), fault2(), fault3(), fault4(), fault5(), )

fault8(), fault9(), faultle(), faultll(), faultl2(), faultl3(
fault14(), faultl5(), faultl6(), faultl7(), fault18(), faultl9(), fault20(
fault21(), fault22(), fault23(), fault24(), fault25(), fault26(), fault27(
fault28(), fault29(), fault3e(), fault31(), fault128();

Uses fault@ 22c, faultl 22c¢, fault10 22c, faultll 22c, faultl2 22c, faultl3 22c, faultl4 22c, fault15 22c,
faultl6 22c, faultl7 22c, faultl18 22c, faultl19 22c, fault2 22c, fault20 22c, fault2l 22c, fault22 22c,
fault23 22c, fault24 22c, fault25 22c, fault26 22c, fault27 22c, fault28 22c, fault29 22c, fault3 22c,
fault30 22c, fault3l 22c, fault4 22c, fault5 22c, fault6 22c, fault7 22c, fault8 22c, and fault9 22c.

fault6(),
)r
)r
)

and we enter these in the IDT just like we did with the irgx() functions. Since there are
so many of them, we’ll use a macro that calls fill_idt_entry,,. () with the same flags and
type arguments as before:

(macro definitions 21c)= (2a)
#define FILL_IDT(i) fill_idt_entry (i, (unsigned int)fault##i, 0x08, 0b1110, 0b1110)
Defines:

FILL_IDT, used in chunk 21d.
Uses fill_idt_entry 12c.

(install the fault handlers 21d)= (20)
FILL_IDT( @); FILL_IDT( 1); FILL_IDT( 2); FILL_IDT( 3); FILL_IDT( 4); FILL_IDT( 5);
FILL_IDT( 6); FILL_IDT( 7); FILL_IDT( 8); FILL_IDT( 9); FILL_IDT(1@); FILL_IDT(11);
FILL_IDT(12); FILL_IDT(13); FILL_IDT(14); FILL_IDT(15); FILL_IDT(16); FILL_IDT(17);
FILL_IDT(18); FILL_IDT(19); FILL_IDT(2@); FILL_IDT(21); FILL_IDT(22); FILL_IDT(23);
FILL_IDT(24); FILL_IDT(25); FILL_IDT(26); FILL_IDT(27); FILL_IDT(28); FILL_IDT(29);
FILL_IDT(3@); FILL_IDT(31); FILL_IDT(128);

Uses FILL_IDT 21c.

[21a]

[21b]

[21c]

[21d]
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[22a]

error code

[22b]

[22¢]

After macro expansion this will generate commands such as

fill_idt_entry (31, (unsigned)fault31, 0x08, 0b1110, 0b1110);

In the assembler file we use the same trick for the faultx() functions that you’ve just
seen for irg*():

(start.asm 18)+= <2la 22b>
global faulte, faultl, fault2, fault3, fault4, fault5, fault6, fault7
global fault8, fault9, faultl@, faultll, faultl2, faultl3, faultld, faultl5
global faultle, faultl7, faultl8, faultl9, fault20, fault2l, fault22, fault23
global fault24, fault25, fault26, fault27, fault28, fault29, fault30, fault3l

The handlers all look similar: We push one or two bytes on the stack and then jump to
fault_common_stub,,. The choice of one or two arguments depends on the kind of interrupt
that occurred: for some faults the CPU pushes a one-byte error code on the stack, and for
some others it does not. In order to have the same stack setup (regardless of the fault) we
push an extra null byte in those cases where no error code is pushed.

The code always looks like one of the following two cases:

fault5: push byte @ ; error code fault8: ; no error code
push byte 5 push byte 8
jmp fault_common_stub jmp fault_common_stub

Since we do not want to type this repeatedly, we use nasm’s macro feature which lets us
write simple macros for both cases. fault_macro_0,,;, handles the cases where we need to
push an extra null byte (as in fault5y;. above), and fault_macro_no@,,, handles the other
cases (as in fault8yz. above):

(start.asm 18)+= <22a 22cp>
%macro fault_macro_0 1 %macro fault_macro_no@ 1
push byte @ ; error code ; don't push error code
push byte %1 push byte %1
jmp fault_common_stub jmp fault_common_stub
%sendmacro %endmacro
Defines:
fault_macro_0, used in chunk 22c.
fault_macro_no®, used in chunk 22c.
Uses fault_common_stub 24b.

With these macros the rest is straight-forward:

(start.asm 18)+= <22b 24ap
faultd: fault_macro_0 @ ; Divide by Zero
faultl: fault_macro_0 1 ; Debug
fault2: fault_macro_0 2 ; Non Maskable Interrupt
fault3: fault_macro_0 3 ; INT3
fault4: fault_macro_0 4 ; INTO
fault5: fault_macro_0 5 ; Out of Bounds
fault6: fault_macro_0 6 ; Invalid Opcode
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fault7: fault_macro_0 7 ; Coprocessor not available
fault8: fault_macro_no® 8 ; Double Fault

fault9: fault_macro_0 9 ; Coprocessor Segment Overrun
fault10: fault_macro_no® 10 ; Bad TSS

faultll: fault_macro_no® 11 ; Segment Not Present
faultl2: fault_macro_no® 12 ; Stack Fault

faultl13: fault_macro_no® 13 ; General Protection Fault
faultl4: fault_macro_no® 14 ; Page Fault

faultl5: fault_macro_0 15 ; (reserved)

faultl6: fault_macro_0 16 ; Floating Point

faultl7: fault_macro_0 17 ; Alignment Check

fault18: fault_macro_0 18 ; Machine Check

faultl19: fault_macro_0 19 ; (reserved)

fault20: fault_macro_0 20 ; (reserved)

fault21: fault_macro_0 21 ; (reserved)

fault22: fault_macro_0 22 ; (reserved)

fault23: fault_macro_0 23 ; (reserved)

fault24: fault_macro_0 24 ; (reserved)

fault25: fault_macro_0 25 ; (reserved)

fault26: fault_macro_0 26 ; (reserved)

fault27: fault_macro_0 27 ; (reserved)

fault28: fault_macro_0 28 ; (reserved)

fault29: fault_macro_0 29 ; (reserved)

fault30: fault_macro_0 30 ; (reserved)

fault31l: fault_macro_0 31 ; (reserved)

Defines:

fault®, used in chunk 21b.

faultl, used in chunk 21b.

fault10, used in chunk 21b.
faultll, used in chunk 21b.
fault12, used in chunk 21b.
fault13, used in chunk 21b.
fault14, used in chunk 21b.
fault15, used in chunk 21b.
fault16, used in chunk 21b.
faultl17, used in chunk 21b.
fault18, used in chunk 21b.
fault19, used in chunk 21b.
fault2, used in chunk 21b.

fault20, used in chunk 21b.
fault21, used in chunk 21b.
fault22, used in chunk 21b.
fault23, used in chunk 21b.
fault24, used in chunk 21b.
fault25, used in chunk 21b.
fault26, used in chunk 21b.
fault27, used in chunk 21b.
fault28, used in chunk 21b.
fault29, used in chunk 21b.
fault3, used in chunk 21b.

fault30, used in chunk 21b.
fault31, used in chunk 21b.
fault4, used in chunk 21b.

fault5, used in chunk 21b.

fault6, used in chunk 21b.
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[24a]

[24b]

[24c]

Fault Handler
[24d]

fault7, used in chunk 21b.
faults, used in chunk 21b.
fault9, used in chunks 21b and 22a.
Uses fault_macro_0 22b and fault_macro_no® 22b.

fault_common_stub,y,;, is—almost—a rewrite of irq_common_stubg, the only difference is that

we call a different C function fault_handler,s, () in the middle.

(start.asm 18)+=
extern fault_handler
Uses fault_handler 25a.

<22¢ 24br>

The stub saves the processor state, calls the handler function and restores the stack frame:

(start.asm 18)+=
fault_common_stub:

(push registers onto the stack 16b)
call fault_handler ; call C function
(pop registers from the stack 17a)
add esp, 8 ; for errcode, irq no.
iret

Defines:

fault_common_stub, used in chunk 22b.
Uses fault_handler 25a.

<24a

Initially our fault handlers will just output a message stating the cause of the fault and
then halt the system; later we will provide fault handlers for some types of faults which
try to solve the problem and let the operation go on. Here are the error messages:

(global variables 12a)+=
char xexception_messages[] =
"Division By Zero", "Debug",
"Non Maskable Interrupt", "Breakpoint",
"Into Detected Overflow", "Out of Bounds",

"Invalid Opcode", "No Coprocessor",

"Double Fault", "Coprocessor Segment Overrun",
"Bad TSS", "Segment Not Present",

"Stack Fault", "General Protection Fault",
"Page Fault", "Unknown Interrupt",
"Coprocessor Fault", "Alignment Check",

"Machine Check",
"Reserved", "Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved", "Reserved", "Reserved",
"Reserved", "Reserved", "Reserved"
H
Defines:
exception_messages, used in chunk 26a.

//
//
//
//
//
//

/7

/7
//

/7

~

~

~

000\;&’\)@
O N L WK

~

1o, 11
12, 13
14, 15
16, 17
18

19..31

(2a) <19

We get the correct message by accessing the proper entry of the array, e. g., for a page

fault (with fault number 14) it is stored in exception_messagesg,. [14].
Our C fault handler

(function prototypes 7a)+=
void fault_handler (context_t x*r);

(2a) <21b
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displays some information about the problem and checks whether the fault occurred while
a process was running (by testing whether r->eip < 0xc0000000). If not, the system
switches to the kernel mode shell (and is broken).

The page fault handler is a special case: we expect to deal with page faults silently (see
the page fault chapter of the ULix book), so we check for this case before doing anything
else.

(function implementations 7b)+= (2a) <20c
void fault_handler (context_t xr)
if (r—>int_no == 14) // fault 14 is a page fault

page_fault_handler (r); return;

memaddress fault_address = (memaddress)(r->eip);

if (r->int_no < 32)
(fault handler: display status information 26a)

if ( fault_address < 0xc0000000 ) // user mode
(fault handler: terminate process 26b)

(disable scheduler ) // error inside the kernel
(enable interrupts 25b)

printf ("\n");

asm ("jmp kernel_shell");

Defines:
fault_handler, used in chunk 24.
Uses context_t 16a and printf.

For completely enabling or disabling interrupts we use the sti and cli Assembler in-
structions that we mentioned earlier in this chapter:

(enable interrupts 25b)= (2¢ 25a)
asm ("sti"); // set interrupt flag

(disable interrupts 25¢)=
asm ("cli"); // clear interrupt flag

The fault_handler,s, function also contains a reference to a code chunk named (disable
scheduler ) which belongs to the scheduler implementation and cannot be discussed in
this excerpt.

For displaying the status information we look at the register contents which are pro-
vided by r. Especially interesting are the task number, the address space number, the
address of the faulting instruction, the EFLAGS register and the error code which the CPU
has provided upon entry into the fault handler.

[25a]

[25b]

[25¢]
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[26a]

[26Db]

page fault
handler

(fault handler: display status information 26a)= (25a)
printf ("'%s' Exception at 0x%08x (task=%d, as=%d).\n",
exception_messages[r->int_nol, r->eip, current_task, current_as);
printf ("eflags: 0x%08x errcode: 0x%08x\n", r->eflags, r->err_code);
printf ("eax: %08x ebx: %08x ecx: %08x edx: %08x \n",
r->eax, r->ebx, r->ecx, r—>edx);
printf ("eip: %08x esp: %08x int: %8d err: %8d \n",
r->eip, r->esp, r->int_no, r->err_code);
printf ("ebp: %08x cs: 0x%02x ds: 0x%02x es: 0x%02x fs: @0x%02x ss: 0x%02x \n",
r->ebp, r->cs, r->ds, r->es, r->fs, r->ss);
printf ("User mode stack: 0x%08x-0x%08x\n", TOP_OF_USER_MODE_STACK
- address_spaces[current_as].stacksize, TOP_OF_USER_MODE_STACK);
Uses exception_messages 24c and printf.

If a process was running, the fault handler terminates it:

(fault handler: terminate process 26b)= (25a)
mutex_lock (thread_list_lock);
thread_table[current_task].state = TSTATE_ZOMBIE;
remove_from_ready_queue (current_task);
mutex_unlock (thread_list_lock);
r->ebx = -1; // exit_ code for this process
syscall_exit (r);

Since we have not talked about processes yet, you need not worry about the mutex_lock and
mutex_unlock commands (which protect the thread table) as well as the other references
to the thread table via thread_table[current_task] or remove_from_ready_queue(). We will
explain all these functions and the thread table data structure later, and we will also show
what the syscall_exit() function does. You can choose to ignore the complete (fault hand-
ler: terminate process 26b) block in the code for now.

A page fault need not be a problem: it often occurs because the code attempted to access
an invalid address (which is bad), but yet more often the address will be valid, but the page
won’t be in the physical RAM. That situation can be helped. The Urix book describes the
implementation of the page fault handler. It requires a working hard disk since we will
page out pages to the disk and later page them in again.
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