

Betriebssysteme Praxis

SS 2012

Hans-Georg Eßer Dipl.-Math., Dipl.-Inform.

Foliensatz A (23.03.2012) Einführung, Virtualisierung, Linux

Zur Vorlesung (1)

Service / Web-Seite: http://fom.hgesser.de

- Folien und Praktikumsaufgaben
- Vorlesungs-Videos ("test, test")
- Probeklausur gegen Semesterende

Hilfreiche Vorkenntnisse:

- Linux-Shell Benutzung der Standard-Shell bash unter Linux
 - → Bash-Crashkurs

Zur Vorlesung (2)

Praktikum:

Systemadministration unter Linux

Prüfung und Benotung

- 1. Lernfortschrittskontrolle (LFK)
- 2. Klausur über 120 Minuten

Fragen:

- direkt in der Vorlesung (Handzeichen)
- oder danach
- oder per E-Mail

Über den Dozenten

Hans-Georg Eßer

- Dipl.-Math. (RWTH Aachen, 1997)
 Dipl.-Inform. (RWTH Aachen, 2005)
- Chefredakteur Linux-Zeitschrift (seit 2000) und Autor diverser Computerbücher
- LPI-zertifiziert (LPIC-1 und LPIC-2)
- seit 2006 Dozent (HS München, FH Nürnberg, FOM): Betriebssysteme, Rechnerarchitektur, IT-Infrastrukturen, Informatik-Grundlagen, Systemprogrammierung
- Seit 2010 Doktorand (Univ. Erlangen-Nürnberg)

Einführung und Motivation

Systemadministration

Ein praktischer Kurs

- Installation
 - Verständnis für Partitionierung, Dateisysteme, Boot-Vorgang
- Wartung
 - Nutzen von Shell-Tools (Linux)
 - Software-Installation
 - Einrichtung von Geräten
 - Benutzer-Verwaltung, Sicherheit
 - Netzwerk-Konfiguration, Netzwerk-Dienste

LPI-Zertifizierung (1)

LPI Certified Junior Level Linux Professional

- Work at the Linux command line
- Perform easy maintenance tasks: help out users, add users to a larger system, backup & restore, shutdown & reboot
- Install and configure a workstation (including X) and connect it to a LAN, or a stand-alone PC via modem to the Internet.

LPI Certified Advanced Level Linux Professional

- Administer a small to medium-sized site
- Plan, implement, maintain, keep consistent, secure, and troubleshoot a small mixed (MS, Linux) network, including a LAN server (samba), Internet Gateway (firewall, proxy, mail, news), Internet Server (webserver, FTP server)
- Supervise assistants
- Advise management on automation and purchases

LPI-Zertifizierung (2)

LPI Certified Senior Level Linux Professional

- hauptsächlich: LDAP
- dazu: verschiedene Spezialisierungen
 - LPI 302: Mixed Environments
 - LPI 303: Security
 - LPI 304: Virtualization and High Availability
 - · es kommen vielleicht noch weitere

Im Rahmen dieser Vorlesung: teilweise (!) Vorbereitung auf die LPIC-1-Prüfungen 101 und 102

LPI-Zertifizierung (3)

- Für die Zertifizierung: Stoff aus dieser Veranstaltung reicht nicht
- insbesondere: "passives Konsumieren" reicht nicht
- Prüfungen sind so gestaltet, dass Administratoren sie leicht bestehen können
 - → üben, üben, üben :)
- Kosten: 145 € pro Prüfung (LPIC-1 = 2 Prüfungen)

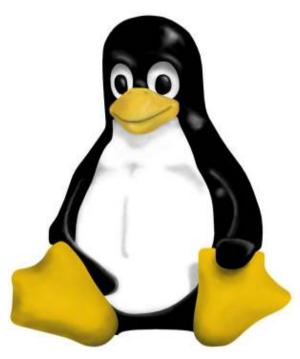
Linux-Administration

- keine grafischen Werkzeuge auch wenn es welche gibt
- also: nicht YaST & Co., sondern Kommandozeilentools, Konfigurationsdateien, Shell-Skripte
- verstehen, was im Hintergrund abläuft

Windows-Administration

- Windows setzt auch bei der Administration überwiegend auf grafische Tools
- "GUI-Administration" leichter (schneller) zu erlernen, bietet aber weniger Möglichkeiten, wenn etwas schief geht
- Windows ist im Rahmen dieser Vorlesung kein Thema

Gliederung


Gliederung

- 1. Einleitung
- 2. Virtualisierung
- 3. Allgemeine Grundlagen
 - Partitionen, RAID
- 3. Linux-Administration
- 4. Windows-Administration

Linux

- Etabliertes Standardsystem für sehr viele Plattformen (PC Desktop / Server, Embedded etc.)
- vor allem auf Servern weit verbreitet
- Image eines virtuellen Linux-PCs für VMware / VirtualBox

Literatur

Grundlagenbuch Linux

Grundlagen, Techniken, Lösungen (Eßer, Dölle) Data Becker, 2007 → als PDF-Dokument im Campus-System

Linux 2011

Debian, Fedora, openSUSE, Ubuntu (Kofler)

Addison-Wesley, 2010

49,80 €; E-Book: 39,80 €

2. Virtualisierung

Virtualisierung

- Idee: Ein Betriebssystem läuft nicht direkt auf der Hardware, sondern als Gast in einer virtuellen Maschine – unter einem Host-Betriebssystem
- Verschiedene Arten der Virtualisierung
 - Full Virtualization (z. B. VMware, VirtualBox)
 - Hypervisor ohne darunter liegendes Betriebssystem (z. B. VMware ESX Server)
 - Paravirtualisierung (z. B. Xen)

Virtualisierung: Warum? (1)

- Ungenutzte Rechenkapazitäten besser ausnutzen (vgl.: Multi-Processing)
- einheitliche Hardware: BS auf virtueller Maschine muss nicht an konkrete Hardware angepasst werden
- Server-Bereich:
 - Konsolidierung wenige große Maschinen statt vielen kleinen
 - vereinfachtes Backup aller virt. Maschinen

Virtualisierung: Warum? (2)

- Einfachere Bereitstellung einer neuen Maschine, einfaches Duplizieren
- Snapshots erlauben Rückkehr zu funktionierendem Zustand einer Maschine
- Sicherheit: Voreinander zu schützende Anwendungen besser in separaten VMs als auf einem logischen Rechner laufen lassen
- Für Entwickler: Test auf verschiedenen
 Plattformen, ohne dafür jeweils 1 PC zu benötigen
- Legacy-Support (alte BS)

Virtualisierung: Warum? (3)

Warum im Rahmen dieser Vorlesung?

- einheitliche Hardware-Umgebung für ein zu testendes Linux-System (Debian)
- Systemverwaltung ohne das Risiko, Ihre Notebooks "kaputt" zu konfigurieren

Virtualisierung: Konzepte

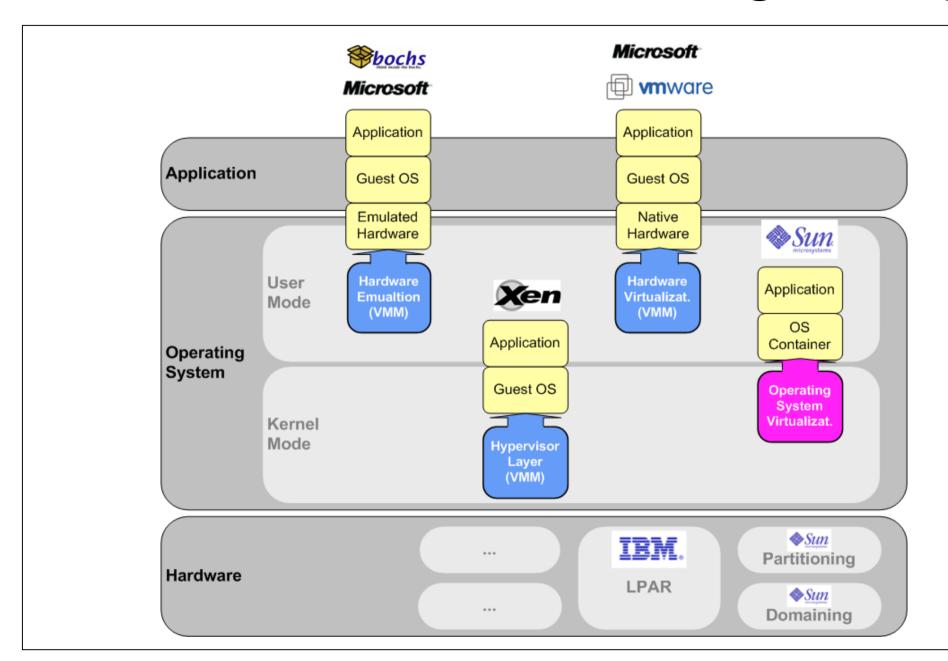
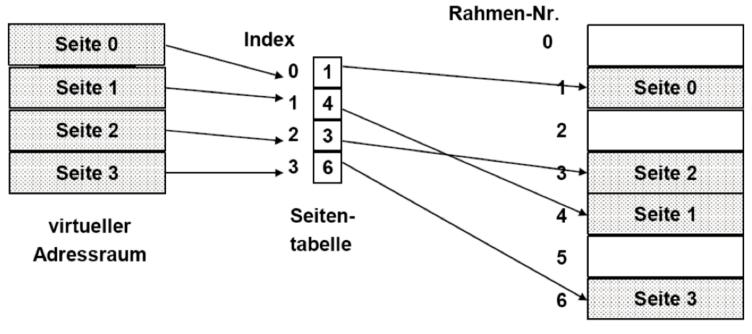


Bild: Daniel Hirschbach, Lizenz: CC-by-sa 2.0/de (Quelle: Wikipedia, Virtualisierung)


Virtualisierung: Probleme

- Einfache User-Mode-Instruktionen (arithmetische und logische Instruktionen, Speicherzugriff bei virtuellem Speicher/Paging) sind direkt ausführbar
- Andere Instruktionen müssen abgefangen werden (im User Mode: Software-Interrupt, OS Call; im System Mode: Hardware-Zugriffe)
- "virtualisierbare" vs. "nicht-virtualisierbare" Instruktionen

Paging in der VM (1)

- Paging, bekannt aus BS-Theorie (3. Sem.):
 - Für jeden Prozess verwaltet das BS eine Seitentabelle, die virtuelle Seiten auf physikalische Seitenrahmen abbildet

Hauptspeicher

 Beim Prozesswechsel wird das Seitentabellenregister (Page Table Pointer) in der CPU aktualisiert

Paging in der VM (2)

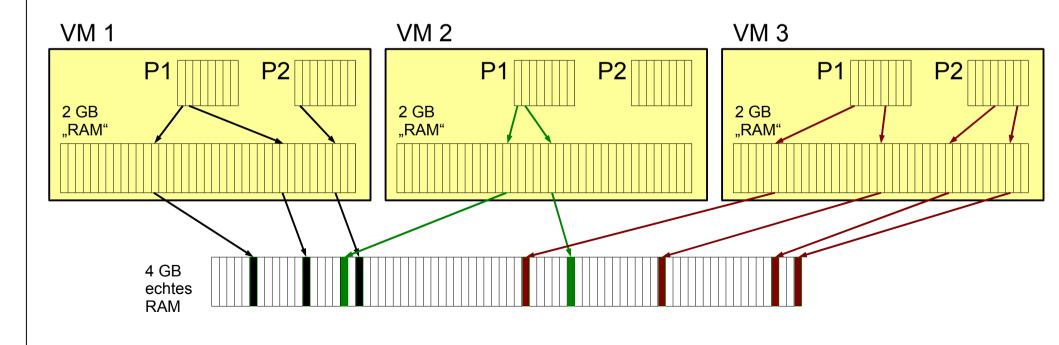
- Was tun bei einem virtualisiertem BS? (1/3)
 - Annahme: Host und Gast arbeiten beide mit Paging und verwenden dieselbe Seitengröße
 - Speicherzugriff im User-Mode (aus einer Anwendung in der virtuellen Maschine) ist eine nicht-privilegierte Operation – es muss also eine Seitentabelle geben, die Seiten auf die echten Seitenrahmen (auf dem Hostsystem) abbildet
 - Gastsystem darf diese Tabelle nicht selbst erzeugen (liegt außerhalb der VM) und nicht selbst das echte CPU-Register verändern

Paging in der VM (3)

- Was tun bei einem virtualisiertem BS? (2/3)
 - Eigentliche zweistufige Übersetzung nötig:
 - Zuordnung
 virtuelle Seite (Gast) → physik. Frame (Gast)
 (durch "virtuelle" MMU, mit Seitentabelle im Gast)
 - Zuordnung physik. Frame (Gast) → physik. Frame (Host)

VMM müsste also jeden Speicherzugriff abfangen und "umbiegen", d. h. in Software die Funktion der MMU nachbilden

Paging in der VM (4)


- Was tun bei einem virtualisiertem BS? (3/3)
 - Lösung: zwei Seitentabellen eine virtuelle Page Table (im Gast) und eine zugehörige "Shadow Page Table" (im Host)
 - Wenn das Gast-BS beim Context Switch die Seitentabelle austauschen will (also das PT-Register schreibt), wird dies abgefangen; dann wird im PT-Register die Adresse der passenden Shadow Page Table eingetragen

Paging in der VM (5)

Beispiel:

- Host: 4 GByte RAM
- 3 Gäste, jeweils 2 GByte virtuelles RAM
- je zwei Prozesse pro Gastsystem

Paging in der VM (6)

Ablauf beim Context Switch im Gast-BS:

- Gast-BS führt Scheduler aus und wählt einen neuen Prozess aus
- Gast-BS setzt PT-Register auf neue Seitentabelle für diesen Prozess
- VMM f\u00e4ngt diesen Aufruf ab und sucht passende Shadow Page Table
- VMM setzt PT-Register und gibt Kontrolle an Gast-BS zurück
- Gast-BS vollendet Context Switch und gibt Kontrolle an neuen Prozess

Emulation vs. Virtualisierung

- Emulation (von Hardware) ist ein anderes Konzept und nicht mit Virtualisierung zu verwechseln
- Emulator ahmt Hardware inkl. CPU vollständig nach
- Instruktionen werden also im Emulator nicht ausgeführt, sondern "interpretiert"
- Emulatoren können auch Hardware mit abweichenden CPUs emulieren (z. B. C64-Emu)

Emulation über Bibliotheken

- Beispiel WINE ("WINE Is Not an Emulator")
- WINE ersetzt auf Linux-Systemen den Programm-Loader und diverse Bibliotheken (DLLs), die Software unter Windows erwartet.
- WINE ist also kein Hardware-Emulator und stellt auch keine virtuelle Maschine bereit.
- Windows-Programme laufen dank WINE fast "nativ" auf dem Linux-System.

VirtualBox und Debian Linux

Praxisteil

- Installation VirtualBox auf Ihrem Notebook / Netbook
- Anlegen einer virtuellen Maschine (5 GByte Plattenplatz, 512 MByte RAM)
- Installation von Debian Linux 5 in der virtuellen Maschine
- erste Experimente mit dem installierten Linux

Einführung in die Linux-Shell

Praxisteil

- Arbeiten mit der Shell
- Verzeichnisnavigation, -Listings
- Dateien kopieren, umbenennen, verschieben
- Verzeichnisse erstellen, löschen etc.
- Dateien öffnen
- Der Editor "vi"